毛纺科技

2020, v.48;No.383(05) 87-91

[打印本页] [关闭]
本期目录(Current Issue) | 过刊浏览(Past Issue) | 高级检索(Advanced Search)

基于卷积神经网络的织物缝纫平整度客观评价
Objective evaluation of fabric sewing flatness based on convolutional neural network

王萌萌;刘成霞;

摘要(Abstract):

针对大多数评价织物缝纫平整度等级方法对实验条件均有较高的要求,且织物种类及环境等因素对实验结果均有较大影响的现状,提出利用卷积神经网络分析织物缝纫平整度等级的方法,以提高等级分类的准确率和效率。设计了一个基于残差卷积神经网络的织物缝纫平整度客观评价模型,该模型以1 000个普通织物的缝纫图像作为训练样本输入,得到缝纫平整度的分类结果,所选织物包含10种常见服装面料品类(塔夫绸、塔斯隆、雪纺、顺纡绉、尼丝纺、麂皮绒、天丝斜纹、真丝缎面、平布、交织绸)。研究结果表明:经200个测试集样本的验证,该模型的评价准确率达96%,与智能化评价以及建立预测模型方法相比,利用卷积神经网络分析织物缝纫平整度等级的方法,具有较好的准确率,且具备获取样本图像流程简单、效率高的优势。

关键词(KeyWords): 织物缝纫图像;平整度等级;卷积神经网络;客观评价

Abstract:

Keywords:

基金项目(Foundation): 浙江省自然科学基金项目(LY20E050017)

作者(Authors): 王萌萌;刘成霞;

DOI: 10.19333/j.mfkj.20190904405

参考文献(References):

扩展功能
本文信息
服务与反馈
本文关键词相关文章
本文作者相关文章
中国知网
分享