一种融合注意力机制的苗族服饰图案分割方法A Miao clothing pattern segmentation method based on attention mechanism
万林江;黄成泉;张博源;王琴;周丽华;
摘要(Abstract):
针对苗族服饰因缺少像素级标注的数据库、元素多元化、纹饰图案不规则等引起的目标区域特征提取难度大的问题,提出了一种融合了注意力机制的SegNet分割模型(SE-SegNet)。在改进的SegNet模型中融入通道注意力SE模块,关注更多的细节特征,旨在于加强对目标特征的提取,实现苗服饰图案的自动分割。实验结果表明,该模型在苗族服饰数据集中,像素准确率为92.69%,交并比值为85.27%,相似系数为92.05%。与其他模型相比,该模型分割结果更精细,在苗族服饰图案分割的效果得到显著提升。服饰图案分割效果的提升对苗族服饰文化的保护和发展具有重要意义。
关键词(KeyWords): 苗族服饰;SegNet模型;SE-SegNet;SE模块;图案分割
基金项目(Foundation): 国家自然科学基金项目(62062024);; 贵州省省级科技计划项目(黔科合基础-ZK[2021]一般342)
作者(Authors): 万林江;黄成泉;张博源;王琴;周丽华;
DOI: 10.19333/j.mfkj.20220506707
参考文献(References):
- [1] CHENG X J,LU J W,YUAN B,et al.Face segmentor-enhanced deep feature learning for face recognition[J].IEEE Transactions on Biometrics,Behavior and Identity Science,2019,1(4):223-237.
- [2] OKTAY O,SCHLEMPER J,FOLGOC L L,et al.Attention U-net:learning where to look for the pancreas[J].arXiv preprint arXiv:1804.03999,2018.
- [3] 常亮,白傑,胡会会,等.MDF-ANet:低光照环境下的无人驾驶视觉融合分割方法[J].北京理工大学学报,2022,42(1):97-104.CHANG Liang,BAI Jie,HU Huihui,et al.MDF-ANet:a visual fusion segmentation method for unmanned driving under low light environment [J].Transactions of Beijing Institute of Technology,2022,42(1):97-104.
- [4] 王禹君,周菊香,徐天伟.改进模糊C均值算法在民族服饰图像分割中的应用[J].计算机工程,2017,34(5):261-267.WANG Yujun,ZHOU Juxiang,XU Tianwei.Application of improved fuzzy C-means algorithm in ethnic clothing image segmentation [J].Computer Engineering,2017,34(5):261-267.
- [5] 冯润,黄成泉,胡雪,等.基于模糊拟合图像驱动的苗族服饰图像分割算法[J].现代纺织技术,2022,30(5):31-41.FENG Run,HUANG Chengquan,HU Xue,et al.Miao clothing image segmentation algorithm based on fuzzy fitting image driving [J].Advanced Textile Technology,2022,30(5):31-41.
- [6] 徐莹珩,钟跃崎.基于多重注意力机制的服装图像实例分割[J].毛纺科技,2021,49(4):25-31.XU Yingheng,ZHONG Yueqi.Garment image instance segmentation based on multi-attention mechanism [J].Wool Textile Journal,2021,49(4):25-31.
- [7] 游小荣,李淑芳,熊宗志.基于卷积姿态机和GrabCut的服装图像轮廓分割方法[J].毛纺科技,2022,50(5):86-90.YOU Xiaorong,LI Shufang,XIONG Zongzhi.Garment image contour segmentation method based on convolutional pose machine and GrabCut [J].Wool Textile Journal ,2022,50(5):86-90.
- [8] LONG J,SHELHAMER E,DARRELL T.Fully conv-olutional networks for semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Boston:IEEE,2015.
- [9] SIMONYAN K,ZISSERMAN A.Very deep convoluti-onnal networks for large-scale image recognition[J].arXiv preprint arXiv:1409.1556,2014.
- [10] BADRINARAYANAN V,KENDALL A,CIPOLLA R.Segnet:a deep convolutional encoder-decoder architecture for image segmentation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,39(12):2481-2495.
- [11] RONNEBERGER O,FISCHER P,BROX T.U-net:convolutional networks for biomedical image segmentation[C]//International Conference on Medical Image Computing and Computer-assisted Intervention.Munich:Springer Cham,2015.
- [12] ZHAO H,SHI J,QI X,et al.Pyramid scene parsing network[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Honolulu:IEEE,2017.
- [13] CHEN L C,PAPANDREOU G,KOKKINOS I,et al.S-emantic image segmentation with deep convolutional nets and fully connected crfs[J].arXiv preprint arXiv:1412.7062,2014.
- [14] CHEN L C,PAPANDREOU G,KOKKINOS I,et al.Deeplab:semantic image segmentation with deep convolutional nets,atrous convolution,and fully connected crfs[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,40(4):834-848.
- [15] CHEN L C,PAPANDREOU G,SCHROFF F,et al.Rethinking atrous convolution for semantic image segmentation[J].arXiv preprint arXiv:1706.05587,2017.
- [16] CHEN L C,ZHU Y,PAPANDREOU G,et al.Encoder-decoder with atrous separable convolution for semantic image segmentation[C]//Proceedings of the European Conference on Computer Vision.Munich:ECCV.2018.
- [17] HU J,SHEN L,SUN G.Squeeze-and-excitation networks [C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Boston:IEEE,2018.
- [18] FU J,LIU J,TIAN H,et al.Dual attention network for scene segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Angeles:IEEE,2019.
- [19] HOU Q,ZHOU D,FENG J.Coordinate attention for ef-ficient mobile network design[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition .Nashville:IEEE,2021.
- [20] WANG Q,WU B,ZHU P ,et al.ECA-Net:efficient channel attention for deep convolutional neural networks[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Seattle:IEEE,2020.
- [21] WOO S,PARK J,LEE J Y,et al.Cbam:Convolutional block attention module[C]//Proceedings of the European Conference on Computer Vision.Munich:ECCV,2018.
- [22] YANG Z,ZHU L,WU Y,et al.Gated channel transformation for visual recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Seattle:IEEE,2020.
- [23] QIN Z,ZHANG P,WU F,et al.Fcanet:frequency channel attention networks[C]//Proceedings of the IEEE International Conference on Computer Vision.Montreal:IEEE,2021.
- [24] PASZKE A,CHAURASIA A,KIM S,et al.Enet:a deep neural network architecture for real-time semantic segmentation[J].arXiv preprint arXiv:1606.02147,2016.
- [25] CHAURASIA A,CULURCIELLO E.Linknet:exploitin-g encoder representations for efficient semantic segmentation[C]// Visual Communications and Image Processing.St.Petersburg:IEEE,2017.
- [26] MEHTA S,RASTEGARI M,CASPI A,et al.Espnet:efficient spatial pyramid of dilated convolutions for semantic segmentation[C]//Proceedings of the European Conference on Computer Vision.Munich:ECCV,2018.
- [27] LO S Y,HANG H M,CHAN S W,et al.Efficient dense modules of asymmetric convolution for real-time semantic segmentation[C]//Proceedings of the ACM Multimedia Asia.2019.
- [28] LI G,YUN I,KIM J,et al.Dabnet:depth-wise asymmetric bottleneck for real-time semantic segmentation[J].arXiv preprint arXiv:1907.11357,2019.