碳纤维“骨架”柔性电热驱动器的制备及其自形变性能Preparation and self-deformation performance of carbon fiber “skeleton” soft electrothermal actuator
张晓慧;杜鲜晶;田明伟;曲丽君;
摘要(Abstract):
柔性驱动器在软体机器人、人工肌肉、人机交互等领域具有广阔的应用前景,但现今电热驱动器普遍存在弯曲变形幅度小、驱动力不足的问题,极大地限制了其实际应用。针对此问题,文章选用碳纤维作为"骨架"材料,加入石墨烯/聚酰亚胺复合界面中,制备具有三明治结构的电热驱动器。碳纤维"骨架"柔性驱动器的机械性能和自形变性能明显增强,最优驱动器在6 V电压下可弯曲109°,响应时间为10 s,输出力为7.25 mN(其质量的10.3倍)。由此,制备了一个自爬行机器人,可在218 s内向前爬行54 mm,展示了其在柔性机器人领域的应用潜能。
关键词(KeyWords): 柔性驱动器;碳纤维;石墨烯;电热驱动;驱动力
基金项目(Foundation): 国家自然科学基金项目(51672141)
作者(Authors): 张晓慧;杜鲜晶;田明伟;曲丽君;
DOI: 10.19333/j.mfkj.20210303905
参考文献(References):
- [1] XIAO Y,JIANG Z,TONG X,et al.Biomimetic locomotion of electrically powered “janus” soft robots using a liquid crystal polymer[J].Advanced Materials,2019,31 (36):1903452.
- [2] ZHAO H,HU R,LI P,et al.Soft bimorph actuator with real-time multiplex motion perception[J].Nano Energy,2020,76:104926.
- [3] 温淑娴,潘康康,罗婉雅,等.丙酮气体响应的氧化石墨烯/纤维膜驱动器[J].东莞理工学院学报,2020,27(1):58-62.
- [4] VELOSAMONCADA L A,AGUILERACORTES L A,GONZALEZPALACIOS M A,et al.Design of a novel MEMS microgripper with rotatory electrostatic comb-drive actuators for biomedical applications[J].Sensors,2018,18(5):1664.
- [5] ZHANG L,PAN J,LIU Y,et al.NIR-UV responsive actuator with graphene oxide/microchannel-induced liquid crystal bilayer structure for biomimetic devices[J].ACS Applied Materials & Interfaces,2020,12(5):6727-6735.
- [6] ZHAO T,DOU W,Hu Z,et al.Reconfigurable soft actuators with multiple-stimuli responses[J].Macromolecular Rapid Communications,2020,41(17):2000313.
- [7] JIN K,ZHANG S,ZHOU S,et al.Self-plied and twist-stable carbon nanotube yarn artificial muscles driven by organic solvent adsorption[J].Nanoscale,2018,10(17):8180-8186.
- [8] ISHIHARA K,MORIMOTO J.An optimal control strategy for hybrid actuator systems:application to an artificial muscle with electric motor assist[J].Neural Networks,2018,99:92-100.
- [9] JIA T,WANG Y,DOU Y,et al.Moisture sensitive smart yarns and textiles from self-balanced silk fiber muscles[J].Advanced Functional Materials,2019,29(18):1808241.
- [10] LING Y,PANG W,LI X,et al.Laser-induced graphene for electrothermally controlled,mechanically guided,3D assembly and human-soft actuators interaction[J].Advanced Materials,2020,32(17):1908475.
- [11] CHEN L,WENG M,ZHANG W,et al.Transparent actuators and robots based on single-layer superaligned carbon nanotube sheet and polymer composites[J].Nanoscale,2016,8(12):6877-6883.
- [12] JING Y,SHI Q,HOU C,et al.Carbon-based thin-film actuator with 1D to 2D transitional structure applied in smart clothing[J].Carbon,2020,168:546-552.
- [13] AHN J,JEONG Y,ZHAO Z,et al.Heterogeneous conductance-based locally shape-morphable soft electrothermal actuator[J].Advanced Materials and Technologies,2020,5(2):1900997.
- [14] HAN B,ZHANG Y L,CHEN Q D,et al.Carbon-based photothermal actuators[J].Advanced Functional Materials,2018,28(40):1802235.
- [15] CHENG H,HUANG Y,SHI G,et al.Graphene-based functional architectures:sheets regulation and macrostructure construction toward actuators and power generators[J].Accounts of Chemical Research,2017,50(7):1663-1671.
- [16] XU T,HAN Q,CHENG Z,et al.Interactions between graphene-based materials and water molecules toward actuator and electricity-generator applications[J].Small Methods,2018,2(10):1800108.
- [17] ZHAO F,ZHAO Y,CHEN N,et al.Stimuli-deformable graphene materials:from nanosheet to macroscopic assembly[J].Materials Today,2016,19(3):146-156.
- [18] CHANG L,HUANG M,QI K,et al.Graphene-based bimorph actuators with dual-response and large-deformation by a simple method[J].Macromolecular Materials and Engineering,2019,304(4):1800688.
- [19] WANG Q,LI Y,ZHANG T,et al.Low-voltage,large-strain soft electrothermal actuators based on laser-reduced graphene oxide/Ag particle composites[J].Applied Physics Letters,2018,112(13):133902.
- [20] LEE C,WEI X,KYSAR J W,et al.Measurement of the elastic properties and intrinsic strength of monolayer graphene[J].Science,2008,321 (5887):385-388.
- [21] BALANDIN A A.Thermal properties of graphene and nanostructured carbon materials[J].Nature Materials,2011,10(8):569-581.
- [22] YANG L,QI K,CHANG L,et al.A powerful dual-responsive soft actuator and photo-to-electric generator based on graphene micro-gasbags for bioinspired applications[J].Journal of Materials Chemistry B,2018,6 (31):5031-5038.
- [23] YOON D,SON Y-W,CHEONG H.Negative thermal expansion coefficient of graphene measured by raman spectroscopy[J].Nano Letter,2011,11(8):3227-3231.
- [24] WOLFF EG.Stiffness-thermal expansion relationships in high modulus carbon fibers[J].Journal of Composite Materials,1987,21(1):81-97.
- [25] WANG D,LU C,ZHAO J,et al.High energy conversion efficiency conducting polymer actuators based on PEDOT:PSS/MWCNTs composite electrode[J].RSC Advances,2017,7 (50):31264-31271.
- [26] CAO Y,DONG J.High-performance low-voltage soft electrothermal actuator with directly printed micro-heater[J].Sensors and Actuators A-physical,2019,297:111546.
- [27] LI Q,LIU C.Fast-response,agile and functional soft actuators based on highly-oriented carbon nanotube thin films[J].Nanotechnology,2020,31 (8):85501.
- [28] WENG M,DUAN Y,ZHOU P,et al.Electric-fish-inspired actuator with integrated energy-storage function[J].Nano Energy,2020,68:104365.